Plastic Response of Tracheids in Pinus pinaster in a Water-Limited Environment: Adjusting Lumen Size instead of Wall Thickness

نویسندگان

  • Ana Carvalho
  • Cristina Nabais
  • Joana Vieira
  • Sergio Rossi
  • Filipe Campelo
  • Eryuan Liang
چکیده

The formation of wood results from cambial activity and its anatomical properties reflect the variability of environmental conditions during the growing season. Recently, it was found that wood density variations in conifers growing under cold-limited environment result from the adjustment of cell wall thickness (CWT) to temperature. Additionally, it is known that intra-annual density fluctuations (IADFs) are formed in response to precipitation after the summer drought. Although IADFs are frequent in Mediterranean conifers no study has yet been conducted to determine if these structures result from the adjustment of lumen diameter (LD) or CWT to soil water availability. Our main objective is to investigate the intra-ring variation of wood anatomical features (LD and CWT) in Pinus pinaster Ait. growing under a water-limited environment. We compared the tracheidograms of LD and CWT for the years 2010-2013 in P. pinaster growing in the west coast of Portugal. Our results suggest a close association between LD and soil moisture content along the growing season, reinforcing the role of water availability in determining tracheid size. Compared with CWT, LD showed a higher intra- and inter-annual variability suggesting its strong adjustment value to variations in water availability. The formation of a latewood IADF appears to be predisposed by higher rates of cell production in spring and triggered by early autumn precipitation. Our findings reinforce the crucial role of water availability on cambial activity and wood formation in Mediterranean conifers, and emphasize the high plasticity of wood anatomical features under Mediterranean climate.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Changes in Wood Anatomy in Tree Rings of Pinus Pinaster Ait. following Wounding by Flash Floods

This paper analyzes the anatomical response of Pinus pinaster Ait. following wounding by flash floods. A total of 14 wood samples were taken from 14 different scarred trees located on the river banks of the Arroyo Cabrera torrent (Spanish Central System). In addition, 20 increment cores were collected from undisturbed and healthy P. pinaster trees to build a local reference chronology. For the ...

متن کامل

Hydraulic efficiency and safety of vascular and non-vascular components in Pinus pinaster leaves.

Leaves, the distal section of the soil-plant-atmosphere continuum, exhibit the lowest water potentials in a plant. In contrast to angiosperm leaves, knowledge of the hydraulic architecture of conifer needles is scant. We investigated the hydraulic efficiency and safety of Pinus pinaster needles, comparing different techniques. The xylem hydraulic conductivity (k(s)) and embolism vulnerability (...

متن کامل

Are needles of Pinus pinaster more vulnerable to xylem embolism than branches? New insights from X-ray computed tomography.

Plants can be highly segmented organisms with an independently redundant design of organs. In the context of plant hydraulics, leaves may be less embolism resistant than stems, allowing hydraulic failure to be restricted to distal organs that can be readily replaced. We quantified drought-induced embolism in needles and stems of Pinus pinaster using high-resolution computed tomography (HRCT). H...

متن کامل

Xylem wall collapse in water-stressed pine needles.

Wall reinforcement in xylem conduits is thought to prevent wall implosion by negative pressures, but direct observations of xylem geometry during water stress are still largely lacking. In this study, we have analyzed the changes in xylem geometry during water stress in needles of four pine species (Pinus spp.). Dehydrated needles were frozen with liquid nitrogen, and xylem cross sections were ...

متن کامل

Size and function in conifer tracheids and angiosperm vessels.

The wide size range of conifer tracheids and angiosperm vessels has important consequences for function. In both conduit types, bigger is better for conducting efficiency. The gain in efficiency with size is maximized by the control of conduit shape, which balances end-wall and lumen resistances. Although vessels are an order of magnitude longer than tracheids of the same diameter, they are not...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2015